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Abstract

Purpose – The purpose of this paper is to consider the conjugate heat transfer from a flat plate
involving a turbulent plane wall jet. The bottom wall of the solid block is heated by a constant
heat flux.

Design/methodology/approach – High Reynolds number two-equation model (k-e) has been used
for turbulence modeling. The parameters considered are the conductivity ratio of solid and fluid, the
solid slab thickness and the Prandtl number. The Reynolds number considered is 15,000 because
the flow becomes fully turbulent and then is independent of the Reynolds number. The range of
parameters considered are: conductivity ratio ¼ 1-1,000, solid slab thickness ¼ 1-10 and Prandtl
number ¼ 0.01-100.

Findings – The non-dimensional bottom surface temperature is high for high-Prandtl number fluid
and vice versa. As conductivity ratio increases, it decreases whereas it increases with the increase in
slab thickness. Similar trend is observed for the distribution of the interface temperature. The Nusselt
number computed based on the interface temperature increases with Prandtl number. It is observed
that for the range of parameters considered, local Nusselt number distribution superimposes with each
other. The average heat flux at the interface has been computed and found to be equal with average
heat flux at the bottom which ensures the overall heat balance.

Originality/value – The study of conjugate heat transfer with a turbulent wall jet will be useful for
cooling of heated body.
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Nomenclature
C1e , C2e , Cm ¼ turbulence model constants
h ¼ width of the jet
k ¼ turbulent kinetic energy
K ¼ thermal conductivity ratio of

solid to fluid (ks/kf)
�p ¼ static pressure

p0 ¼ ambient pressure
�P ¼ non-dimensional static

pressure
Pr ¼ Prandtl number
Re ¼ Reynolds number, U0 h/n
S ¼ thickness of solid slab

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/0961-5539.htm

Computational
study of heat

transfer

39

Received 1 April 2007
Revised 29 October 2007

Accepted 29 October 2007

International Journal of Numerical
Methods for Heat & Fluid Flow

Vol. 19 No. 1, 2009
pp. 39-52

q Emerald Group Publishing Limited
0961-5539

DOI 10.1108/09615530910922143



�T ¼ dimensional temperature
T1 ¼ inlet and ambient temperature
U0 ¼ average inlet jet velocity
�u; �v ¼ dimensional mean velocities

in x, y-directions, respectively
�U; �V ¼ non-dimensional velocities in

X, Y-directions, respectively
x, y ¼ dimensional co-ordinates
X, Y ¼ non-dimensional co-ordinates

Greek symbols
al, at ¼ laminar and turbulent thermal

diffusivities, respectively
e ¼ dissipation
�u ¼ non-dimensionalized

temperature
nl, nt ¼ laminar and turbulent

kinematic viscosity
sk, se ¼ turbulence model constants

1. Introduction
In a conjugate heat transfer problem, the heat transfer in a fluid regime is coupled with
the conducting solid wall having a finite thickness. Equality of the temperature and the
heat fluxes at the solid-fluid interface are considered for this case and is referred to as
the fourth-kind boundary condition (Luikov et al., 1971). Conjugate heat transfer
applies to the thermal systems in which the multi-mode convection/conduction heat
transfer is of particular importance to thermal design. Conjugate heat transfer is
involved in many applications like high speed jet engines, electronics cooling, film
cooling of turbine blades, extrusion of materials, etc.

In the present case, a conjugate heat transfer from a solid block heated with a constant
wall flux is con-sidered. It is being cooled by a turbulent plane wall jet. Glauert (1956) has
given a similarity solution for plane wall jet as well as radial wall jet for both laminar and
turbulent cases are presented with the introduction of Glauert constantF. Seban and Back
(1961) have measured and compared the turbulent wall jet velocity profile and the
adiabatic wall temperature. The results agree generally with each other. In the laminar
flow regime, many publications are devoted to conjugate heat transfer on flat plate details
of which may be found in Kanna and Das (2005). However, the conjugate heat transfer
study involving a turbulent flow has received little attention. Some of the conjugate heat
transfer work published in literature (involving turbulent flow) are by Iaccarino et al.
(2002), Yilbas et al. (2002, 2003), Kassab et al. (2003) and Hsieh and Lien (2005).

In the present case, the conjugate heat transfer involving a turbulent plane wall jet
is considered. The bottom of the solid slab is heated by a constant heat flux. In the
conjugate heat transfer approach, the conduction in the solid and the convection
equations in the fluid regions are solved simultaneously. The parameters considered
are the conductivity ratio (solid/fluid), the solid slab thickness and the Prandtl number.
The Reynolds number considered is 15,000 because the flow becomes fully turbulent
and then it becomes independent of the Reynolds number (Holland and Liburdy, 1990).

The near-wall treatments of turbulence models are the key factors to yield an accurate
wall heat transfer predictions. In the standard high-Reynolds number k-e models, wall
functions are commonly employed to bridge the turbulent and near-wall viscous regions.
Different modifications of the two-equation turbulence models have been used by several
researchers to solve the jet impingement problems. For example, Bouainouche et al. (1997)
have studied the wall shear stress produced by the impingement of a plane turbulent jet on
a plate. Heck et al. (2001) have solved the gas quenching problem. Merci et al. (2003) have
solved the heat transfer in the case of jet impingement on to a surface. In the present study,
the high-Reynolds number two equation turbulence model with standard wall function
has been used to solve the wall jet flow and conjugate heat transfer problem.
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2. Governing equations
The schematic diagram of the two-dimensional wall jet with a solid slab is shown in
Figure 1. The governing equations are considered to be steady, 2D and incompressible.
Thermo-physical properties are assumed to be constant. In the fluid region, the flow is
fully turbulent and the Reynolds averaged Navier-Stokes equations are used for
predicting the turbulent flow. Boussinesq approximation is used to link the Reynolds
stresses to the velocity gradients. The standard k-e model is used for calculating the
turbulent viscosity (vt). In the solid region, the 2D heat transfer equation is solved. The
resulting governing equations in the fluid are:

. continuity equation:

›�u

›x
þ

›�v

›y
¼ 0; ð1Þ
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. energy equation:
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. Turbulent kinetic energy (k) equation:
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. Rate of dissipation (e) equation:
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Where production by shear (G):

G ¼ vt 2
›�u

›x

� �2

þ2
›�v

›y

� �2

þ
›�u

›y
þ

›�v

›x

� �2
" #

: ð7Þ

Eddy viscosity (vt) is given as:

vt ¼ Cm

k 2

e
: ð8Þ

In the solid region, the energy equation is:

›2T

›x 2
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›y 2
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� �
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The dimensionless variable are defined as:
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The non-dimensionalized equations are:
. Continuity equation:

› �U

›X
þ

› �V

›Y
¼ 0: ð11Þ
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. x-momentum equation:
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. y-momentum equation:
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. Temperature equation ð �uÞ is:
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. Turbulent kinetic energy (kn) equation is:
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. Rate of dissipation ðenÞequation is:
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. Eddy viscosity (vt, n):

vt;n ¼ CmRe
kð2=nÞ

en
: ð18Þ

. Eddy diffusivity (at, n):

at;n ¼
vt;n

Pr
; ð19Þ

where: sk ¼ 1.0, se ¼ 1.30, C1e ¼ 1.44, C2e ¼ 1.92, Cm ¼ 0.09.
In the solid region, the energy equation is:

›2u

›X 2
þ

›2u

›Y 2
¼ 0: ð20Þ

3. Numerical scheme and method of solution
In the present work, for the fluid region, the dimensionless governing equations are
discretized using the control volume method (Patankar, 1980). Power-law scheme is used to
discretize the convective terms and central difference is used for diffusive terms due to
ensure the stability of the solution. To avoid the fine mesh required to resolve the viscous
sub-layer near the boundary, the wall function method (Launder and Spalding, 1974) has
been used which is appropriate for high-Reynolds number flows. SIMPLE (Patankar, 1980)
algorithm is followed to solve the finite difference equations. Pseudo-transient approach
(Versteeg and Malalasekera, 1996) is used to under-relax the momentum and the turbulent
equations. An under-relaxation of 0.2 is used for pressure. In the solid region, central
differencing is used for discretizing the energy equation by finite difference technique.

4. Boundary conditions
The jet is entering into the quiescent ambient fluid at the surface of the wall.
The non-dimensionalized boundary conditions are provided as input to the solution. At the
inlet (AE) of the jet, U ¼ 1.0, V ¼ 0, u ¼ 0 are the boundary conditions for the velocities
and temperature, respectively. For the turbulent kinetic energy equation, the boundary
condition at inlet is kn ¼ 1.5I 2 where I is the turbulence intensity and is equal to 0.02
(Biswas, 2002). For the dissipation equation, the boundary condition at inlet is
en ¼ kncðð3=4Þ=mÞ=l, where l ¼ 0.07 h (Biswas, 2002). At the solid wall (DE), no-slip
boundary condition is used for velocities and adiabatic condition is used for the
temperature. At the entrainment and exit boundaries (i.e. CD and BC, respectively),
Neumann boundary conditions are provided, i.e. ›f/›n ¼ 0 where f ¼ �U; �V; �u kn and en.
At the solid-fluid interface (AB), no-slip boundary conditions are applied for velocities and
for the temperature, equality of temperature and flux, i.e. ðusÞw ¼ ðuf Þw and ðQwÞs ¼
ðQwÞf are applied and the details are mentioned in the appendix (Appendix A). Wall
functions are used to prescribe the shear stress, production and dissipation rates at the
walls. It has been ensured that the first grid falls within the logarithmic region, i.e.
20 # Y þ # 60, where Y þ ¼ yur=v, ur being the friction velocity. At the bottom of solid
block (i.e. at EG) constant heat flux is applied. The details of constant heat flux is given in
Appendix B. Since the both the walls of solid block (i.e. AE and BG), the heat supplied at
the bottom of the wall and at the interface must be equal and it is observed.
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The code is already tested for validation and grid independence for Re ¼ 15,000
without solid block. Since the flow is incompressible the already available fluid
solution is used to solve the energy equation in both solid and fluid. Grid independence
is done in the solid for S ¼ 1 by varying the Prandtl number and thermal conductivity
ratio (K). For other sizes grid size is correspondingly increased, which is reasonably
valid in the solid block.

5. Results and discussion
In the present work, Re ¼ 15,000 is chosen for all computations. The flow becomes
fully turbulent and there is no discernible Reynolds number effect on the mean flow
characteristics (Holland and Liburdy, 1990). Since the uniform velocity and some
turbulent intensity is given at the inlet of the jet, it takes some length for the flow to
become fully turbulent and develop the self similar region, which is observed in the
fluid solution. It is observed that approximately at X(30, the flow become fully
turbulent and a self-similarity is achieved. At the bottom, a constant heat flux
boundary condition is applied. The purpose of the study is to observe and describe the
effect of Prandtl number (Pr), thermal conductivity ratio (K) and the thickness of solid
slab (S) on the bottom wall temperature, interface surface temperature (ui), heat
transfer between the solid and the fluid (Qi), local Nusselt number distribution (Nux),
average Nusselt number ðNuÞ and the temperature distribution in the solid and
the fluid. For this, Pr is varied between 0.01 and 100, K is varied between 1 and
1,000 and S is varied between 1 and 10. The derivation of heat flux is given
in Appendix A. The definition of constant heat flux at the solid wall is given in
Appendix B. The definitions of Nux and Nu are shown in Appendix C.

5.1 Bottom wall temperature
As discussed in Appendix B, the constant heat flux boundary condition is applied
by 2ð›u=›Y Þ ¼ ðPr=KÞ (equation (A5)). Here, Qb is taken as 1/Re. For a fixed K,
as Pr is increasing, the bottom wall temperature is also increasing (Figure 2(a)).
Unlike a constant wall temperature case, the bottom wall temperature is changing
with the change in Pr and K. Similarly, as K is increasing, the bottom wall
temperature is decreasing (Figure 2(b)). As S increases, the resistance to heat
transfer increases. So the bottom wall temperature increases (Figure 2(c)). In the
downstream direction Nux decreases and thus the bottom wall temperature
increases.

5.2 Interface temperature
Figure 3(a) shows the interface temperature (ui) distribution at various Prandtl
numbers keeping the solid thickness (S ¼ 10) and the thermal conductivity ratio
(K ¼ 1,000) constant. Since the bottom wall temperature is high for high Pr case, the
interface temperature is also high. The Nux is high near the inlet and thus there is
decrease of the interface temperature for Pr ¼ 100. Similarly, as Pr decreases, the
interface temperature also decreases. Figure 3(b) shows the ui distribution at various
thermal conductivity ratios keeping the Prandtl number equal to 1.0 and solid
thickness equal to 10. The interface temperature for the first half is low for low K and
the situation reverses for the last half. Figure 3(c) shows the ui distribution at various
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solid thicknesses (S) keeping the Prandtl number (Pr ¼ 1.0) and thermal conductivity
ratio (K ¼ 1,000). Similar trend is observed in this case also.

5.3 Local Nusselt number
Figure 4(a) shows the Nux distribution at various Prandtl numbers keeping the solid
thickness (S ¼ 10) and thermal conductivity ratio (K ¼ 1,000) constant. In general,
Nux increases to a large value near the jet entry and then gradually decreases in the
direction of flow. This is a characteristics of the jet boundary layer formation.
As shown in the figure, it demonstrates clearly that Nux increases with Pr because of
the thinning of the thermal boundary layer. Figure 4(b) shows the Nux distribution at
various thermal con-ductivity ratios keeping Pr ¼ 1.0 and S ¼ 10. It is observed that
for the range of K, the Nux distribution superimposes with each other. Figure 4(c)
shows the Nux distribution at various solid thickness (S) keeping Pr ¼ 1.0 and
thermal conductivity ratio K ¼ 1,000. Similar to the previous case, the Nux
distributions for the range of S superimposes with each other. From these three

Figure 2.
Bottom surface
temperature distribution
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figures, it is concluded that Nux dependents on the fluid property Pr and remains
unaltered for the variation of K and S.

5.4 Local heat flux
Figure 5(a) shows the local heat flux Qx distribution occurring through the interface at
various Prandtl numbers keeping S ¼ 10 and K ¼ 1,000. There are minor variation of
heat flux as Pr is being changed. Though a constant heat flux is applied at the bottom
of the wall, it is observed that the heat flux along the wall varies at the interface. The
local heat flux is high at the inlet and decreases along the wall. The variation of local
heat flux is high for low-Prandtl numbers. Figure 5(b) shows the Qw distribution at
various thermal conductivity ratios keeping Pr ¼ 1.0 and S ¼ 10. At low thermal
conductivity ratios the local heat flux along the wall is constant and increases as K
increases. The heat flux applied at the bottom is constant. The same heat flux has to
pass through the interface. As the heat flux is high in the initial part, the same thus
deceases in the later part to satisfy the continuity of heat flux. Figure 5(c) shows the Qw

Figure 3.
Interface temperature
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distributions at various solid thickness (S) keeping Pr ¼ 1.0 and K ¼ 1,000. It is found
that there is an effect of slab thickness on the local heat flux along the wall. At inlet
of the jet, the local heat flux increases as the slab thickness increases. The decrement of
heat flux along the later part can be justified by the reason given above.

5.5 Average Nusselt number
Extensive computations are done in the respective ranges of the parameters.
The results of the average Nusselt number ðNuÞ are presented in Table I. It shows
clearly that Nu is a function of Prandtl number only. The effect of the solid thickness
(S) and the thermal conductivity ratio (K) are negligibly small. It is observed that Nu
increases with the increase of Pr.

5.6 Average heat transfer
The average heat transfer integrated over the surface for variousS,K andPr are obtained.
It has been ensured that the average heat transfer from the interface matches with that

Figure 4.
Local Nusselt number
distribution
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Figure 5.
Heat flux distribution
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S (thickness of
solid slab)

Thermal conductivity
ratio K
(ks/kf)

Nu
(Pr ¼ 0.01)

Nu
(Pr ¼ 0.1)

Nu
(Pr ¼ 1)

Nu
(Pr ¼ 10)

Nu
(Pr ¼ 100)

0 (non-conjugate) – 1.36885 8.88723 31.6527 73.019 153.062
1 1 1.36751 8.88378 31.6592 73.0218 153.062
1 100 1.34832 8.79847 31.7535 73.085 153.085
1 1,000 1.30349 8.64074 31.729 73.1181 153.106
5 1 1.36634 8.88148 31.66 73.0223 153.063
5 100 1.322 8.71103 31.7363 73.0925 153.089
5 1,000 1.28271 8.47891 31.6082 73.0989 153.106
10 1 1.36575 8.88066 31.6598 73.0223 153.063
10 100 1.30699 8.67783 31.7199 73.0901 153.089
10 1,000 1.27948 8.42292 31.5114 73.0744 153.101

Table I.
Average Nusselt number

(Nu) at various Prandtl
numbers
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occurring from the bottom surface for all the cases. This computation satisfies the overall
energy balance.

6. Concluding remarks
In the present case, the conjugate heat transfer involving a turbulent plane wall jet is
considered. The bottom surface is maintained at a constant heat flux boundary
condition. The parameters considered are the conductivity ratio, the solid slab thickness
and the Prandtl number. The Reynolds number considered is 15,000 because the flow
becomes fully turbulent and is independent of the Reynolds number. The
non-dimensionalization of the heat flux boundary condition for a conjugate heat
transfer case has been done. The non-dimensional bottom surface temperature is high
for highPrfluid and vice versa. AsK increases, it decreases whereas it increases with the
increase in S. Similar trend is observed for the distribution of the interface temperature.
The Nusselt number computed based on the interface temperature increases with Pr
because of the thinning of the thermal boundary layer. It is observed that for the range of
K and S, Nux distribution superimposes with each other. The local heat flux increases
near the inlet becauseNux is large and decreases at the later part to satisfy the equality of
heat flux coming from the bottom wall and the heat flux dissipated by the wall jet. The
average heat flux at the interface has been computed and found to be equal with average
heat flux at the bottom which ensures the overall heat balance.
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Appendix 1. Deriving the expression for heat flux in the fluid side
At the interface between the solid and fluid, the following conditions are applied:

. us ¼ uf at the interface.

. Heat transfer across the interface must be equal.

Wall heat flux in the fluid side is given by:

Qf ¼
ðuv 2 up;f Þcðð3=4Þ=mÞkðð1=2Þ=nÞ

Prt ð1=kÞlogðEY þÞ þ Pf

� � : ðA1Þ

where Pf pee-function, which is given by:

Pf ¼ 9:24
Pr

Prt

� �3=4

21

" #
£ 1 þ 0:28 exp 20:007

Pr

Prt

� �� �
: ðA2Þ

Heat transfer in the solid side is given by:

Qs ¼ 2
1

RePr

ks

kf

� �
›u

›Y
¼

1

RePr

ks

kf

� �
up;s 2 uv

DY
: ðA3Þ

Interface temperature is calculated by equating equations (A1) and (A3). where up,f, up,s are
neighbor temperatures in the fluid and solid regions.

Appendix 2. Definition of the constant heat flux at the solid wall
Heat flux at the bottom of the wall is given by:

qb ¼ 2ks
›T

›y
: ðA4Þ

Since the heat flux across the wall is non-dimensionalized by the Qref ¼ rcpU 0DT . Here, DT is
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some assumed temperature difference. So the same reference heat flux is used to
non-dimensionalized equation (A4). Finally, equation (A4) becomes:

qb ¼ 2
ks

kf

›u

›Y

1

Re ·Pr
: ðA5Þ

In the present calculations Reynolds number is constant in all cases. In order to give the same
heat flux at the bottom wall in all cases Qb is taken as 1/Re (heat flux applied Qb ¼ 1/Re).

Appendix 3. Deriving the expression for Nusselt number calculation

Nux ¼
hcH

k
¼ hcð �Tv 2 �T1Þ £

n

a
:

1

pCp
:

1

U 0ð �Tv 2 �T1Þ
:
U 0H

n
; ðA6Þ

Nux ¼
QvPr ·Re

pCpð �Tv 2 �T1Þ
: ðA7Þ

We can write the above equation as:

Nux ¼
QvPr ·Re

pCpð �Tv 2 �T1Þ
:
ð �Th 2 �T1Þ

Th 2 �T1

ðA8Þ

Finally:

Nux ¼
Qv;nPr ·Re

�uv
; ðA9Þ

since �u1 ¼ 0.
Which is used for calculating the Local Nusselt number distribution. The average Nusselt

number is calculated as:

Nu ¼
1

L

Z L

0

Nuxdx: ðA10Þ
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